

United States Department of Agriculture (USDA) Agricultural Research Service (ARS) 1420 Experiment Station Road Watkinsville Georgia 30677 USA

Tel: 1-706-769-5631

Email: alan.franzluebbers@ars.usda.gov

Alan **Franzluebbers**

Ecologist

Soil Carbon Sequestration

Recent Trends in Conservation Agriculture under Mediterranean Conditions

✓ Minimal disturbance of the soil surface is critical in avoiding soil organic matter loss from erosion and microbial decomposition

Depth distribution of crop residues

Depth distribution of crop residues

Depth distribution of soil organic C

From Schnabel et al. (2001) Ch. 12, Pot. U.S. Grazing Lands Sequester C, Lewis Publ.

Depth distribution of soil organic C

Data from Franzluebbers et al. (1999) Soil Sci. Soc. Am. J. 63:349-355

Depth distribution of soil organic C

Data for Georgia from Franzluebbers et al. (1999) Soil Sci. Soc. Am. J. 63:349-355; for Morocco from Mrabet et al. (2001) Soil Till. Res. 57:225-235; for Alberta/BC from Franzluebbers and Arshad (1997) Soil Sci. Soc. Am. J. 61:1382-1386)

Calculation by relative difference

Data from Causarano et al. (2008) Soil Sci. Soc. Am. J. 72:221-230

Calculation by relative difference

Data from Causarano et al. (2008) Soil Sci. Soc. Am. J. 72:221-230

Calculation by modeling

Using:

- (a) remote sensing (Quickbird, SPOT) of land use from a 64 km² area in Mali (750 mm yr⁻¹)
- (b) EPIC-Century modeling of agroecosystem processes erosion and soil organic C sequestration were predicted (25 y):

Management (49% cropped)	Erosion (Mg ha ⁻¹ yr ⁻¹)	Soil Organic C (Mg ha ⁻¹ yr ⁻¹)
Conventional tillage (CT)	16.5	-0.023
CT with increased fertilizer	15.0	-0.006
Ridge tillage (RT)	6.6	0.001
RT with increased fertilizer	5.9	0.027
RT with fertilizer and residues	3.5	0.086

Doraiswamy et al. (2007) Agric. Syst. 94:63-74

Calculation by modeling

Using:

(a) EPIC-Century modeling of cotton production systems:

Management	Lint Yield (Mg ha ⁻¹)	Soil Organic C Sequestration (Mg ha ⁻¹ yr ⁻¹)
Conventional tillage (CT) cotton	1.4	- 0.03 b
No tillage (NT) cotton / wheat	1.2	0.39 a
NT cotton / wheat – corn / wheat	1.3	0.49 a
NT cotton / wheat – corn / wheat – bermudagrass	1.2	0.50 a

In the USA and Canada, conservation-tillage cropping can sequester an average of 0.33 Mg C/ha/yr

✓ No tillage needs high-residue producing cropping system to be effective

Photos of 2 no-tillage systems in Virginia USA

Soil Organic Carbon Sequestration in the Southeastern USA

0.28 ± 0.44 Mg C/ha/yr (without cover cropping)

0.53 ± 0.45 Mg C/ha/yr (with cover cropping)

Impact of residue retention on other responses

✓ From the 12th year of an irrigated wheat-maize rotation in the volcanic highlands of central Mexico, rate of water infiltration, crop yield, and soil organic C reflected differences in surface soil condition due to residue management:

Tillage	Residues	Infiltration (cm h ⁻¹)	Yield (Mg Maize	ha ⁻¹) ₁₉₉₆₋₂₀₀₂ Wheat
Zero	Without	18	3.4	3.9
Zero	With	90	4.8 	5.4

Retaining residues for 12 years significantly increased soil organic C, but absolute treatment values were not reported.

Integration of crops and livestock

✓ Opportunities exist to capture more carbon from crop and grazing systems when the two systems are integrated:

- Utilization of lignocellulosic plant materials by ruminants
- Manure deposition directly on land
- Weeds can be managed with management rather than chemicals

Franzluebbers and Stuedemann (unpublished)

Summary

Soil organic carbon can be sequestered with adoption of conservation agricultural practices

- ✓ Enhanced soil fertility and soil quality
- ✓ Mitigation of greenhouse gas emissions
- ✓ Soil surface change is most notable
- ✓ Long-term changes are most scientifically defensible

